

 AN10922
Symmetric key diversifications
Rev. 2.0 — 8 February 2017
165320

Application note
COMPANY PUBLIC

Document information
Info Content
Keywords MIFARE Plus, MIFARE DESFire, MIFARE SAM AV2, Key diversification,

CMAC, TDEA, AES.

Abstract This Application note describes CMAC based symmetric key
diversification algorithms supported by NXP’s MIFARE SAM AV2.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

2 of 21

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
2.0 20170208 General update

1.3 20100317 Re-organization, addition of examples.

1.2 20100129 Addition of AES-192, 2TDEA, 3TDEA key diversification algorithms.

1.1 20090813 Editorial changes, no content change.

1.0 20081112 Preliminary version.

http://www.nxp.com/

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

3 of 21

1. Introduction
Key diversification is a process of deriving the keys from a master (base) key using some
unique input. Each card is getting a different value for each key, so that if one key is
broken somehow (maybe from the terminal); the vulnerability is limited to that key on that
card rather than the whole system being affected.

The diversified keys are generated and given (stored) to the PICC at its personalization
phase, so all cards get unique keys. In the validation process, the POS terminal gets the
information to generate the unique key for that unique card which is presented. MIFARE
SAM AV2 can be an optimum secure solution for this key diversification process. The
master (base) key can be stored securely in the MIFARE SAM AV2 and can be used to
generate or use only the diversified keys.

MIFARE SAM AV2 supports two types of key diversification:
• old method, based on classical encryption and backwards compatible with SAM AV1,

and
• new method, based on CMAC calculation

In this document, only the key diversification based on CMAC calculation is discussed,
as it is the recommended one and new to the MIFARE SAM product. AES (128 and 192-
bit key length) and TDEA (2-key and 3-key TDES) keys can be diversified using this
CMAC based key diversification method.

In this document the algorithms are explained in a way that, they can be implemented
easily in the SW in the installations without SAM today, but tomorrow using SAM.

All keys in a card can be derived from one master key however it is also possible to use
a different master key for one set of keys versus another set of keys.

1.1 Abbreviations

Table 1. Abbreviations
Abbreviations Meaning
AES Advanced Encryption Standard

AID Application ID

CBC Cipher Block Chaining

CMAC Cipher based MAC

DES Data Encryption Standard

DF DESFire

IV Init Vector

LSB Lowest Significant Bit

MAC Message Authentication Code

MSB Most Significant Bit

PCD Proximity Coupling Device (reader/ writer unit)

PICC Proximity Integrated Circuit Card

POS Point Of Sales

TDEA Triple Data Encryption Algorithm

UID Unique Identification number

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

4 of 21

1.2 Examples presented in this document
The following symbols have been used to mention the operations in the examples:

= Preparation of data by SAM, PICC or host.

Please note, that the numerical data are used solely as examples. They appear in
the text, in order to clarify the commands and command data.

Any data, values, cryptograms are expressed as hex string format if not otherwise
mentioned e.g. 0x563412 in hex string format represented as “123456”. Byte [0] = 0x12,
Byte [1] = 0x34, Byte [2] = 0x56.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

5 of 21

2. Key Diversification

2.1 Construction
For diversification, the recommended way by NXP is to use the CMAC construction of an
amount of data using a master key. See [CMAC].

The pre-requisite is that there is enough input “diversification data” in order to make it a
MAC. A MAC is used rather than encryption to make it a one way function.

Fig 1. CMAC construction (2 cases: left without padding, right with padding)

Fig 1 illustrates the standard CMAC constructions (see [CMAC]) in two possible padding
cases.

According to [CMAC], to avoid certain classes of attack (in the CMAC), the last block is
modified before ciphering by being XORed with one of two possible “sub key” values
(denoted K1 or K2), derived from an encryption of the zero vector under the key in use;
the choice of which sub key to use is determined by whether the last message block
contains padding or not.

These computations can be abstracted by the function CMAC (K, D, padded). In the
context of the key derivations described further in this document another primitive is used
because the padding is performed in a non-CMAC standard way. The corresponding
computations can be abstracted by the function CMAC (K, D, Padded), where K is the
key to be diversified, D the diversification input data and Padded is a Boolean flag that
signals to the CMAC(.,.,.) function whether M had to be padded or not.
If the keys are to be diversified per card, it is recommended to use for the diversification
input at least the UID of the card concatenated with e.g.
• For MIFARE Plus: the block number where the key is stored. Note however that if

multi-sector authentication is desired, all keys that need to be the same need to be
generated using same block number.

• For MIFARE DESFire: key number concatenated with application number.

Note: In this implementation, always two blocks (two times 16-byte for AES and
two times 8-byte for TDEA) of message have been used.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

6 of 21

2.2 AES-128 key
Input:
• 1 to 31 bytes of diversification input (let’s name it “M”)
• 16 bytes AES 128 bits master key (let's name it “K”)

Output:
• 16 bytes AES 128 bits diversified key.

Algorithm:
1. Calculate CMAC input D:
2. D ← 0x01 || M || Padding
3. Padding is chosen such that D always has a length of 32 bytes. Padding bytes are

according to the CMAC padding, i.e. 80h followed by 00h bytes. So the length of
Padding is 0 to 30 bytes.

4. Calculate the Boolean flag ‘Padded’, which is true if M is less than 31 bytes long,
false otherwise. The Boolean argument “Padded” is needed because it must be
known in AES128CMAC which K1 or K2 is to be used in the last computation round.

5. Calculate output:
6. Diversified Key ← AES128CMAC (K, D, Padded)

Processing load:

One AES 128 key load, 3 AES 128 computations

Fig 2 shows the algorithm as a block diagram.

AES DIV
Constant 1

Diversification input
(1 – 31 bytes)

AES 128 Key
(16 bytes)

Diversified AES 128 Key
(16 bytes)

Padding

AES128CMAC(K,D, Padded)

32 bytes
D

Padded

K

DiversifiedKey

Diversification input
(1 – 31 bytes)

AES DIV Constant 1 = 0x01

M

Fig 2. Diversification of 128-bit AES key

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

7 of 21

2.2.1 AES-128 key diversification example
Master key (K) = 00112233445566778899AABBCCDDEEFF, which will be diversified.

Table 2. Example – AES 128 key diversification
step Indication Data/ Message Comment
CMAC sub key generation
1 Master key (K) = 001122334455667788

99AABBCCDDEEFF
The key, which is going to be
diversified

2 K0 = FDE4FBAE4A09E020
EFF722969F83832B

CIPHK(0b), AES (K, 16-byte 0s).

3 K1 = FBC9F75C9413C041D
FEE452D3F0706D1

The first sub key, see in [CMAC].

4 K2 = F793EEB928278083B
FDC8A5A7E0E0D25

The second sub key, see in [CMAC].

Diversified key generation

5 UID = 04782E21801D80 7-byte UID of PICC

6 Application ID = 3042F5 3- byte DESFire AID

7 System Identifier = 4E585020416275 ASCII of system identifier name

8 Diversification input
(M)

= 04782E21801D803042
F54E585020416275

Data from step 5 to step 7. It doesn’t
matter how you make your
diversification input, diversification
input must be unique for unique
PICC e.g. here the UID is unique
and the same diversification input
must be used in personalization and
validation of the PICC. Maximum
length of M is 31 bytes.

9 Add the Div
Constant 1 at the
beginning of M

= 0104782E21801D8030
42F54E585020416275

Div constant is fixed, must be 0x01
for AES 128 keys.

10 Do I need Padding = Yes The algorithm always needs 32-byte
block for AES; so far we have 18
bytes (step 9).

11 Padding = 800000000000000000
0000000000

14-byte padding to make 32-byte
block.

12 CMAC input D = 0104782E21801D8030
42F54E585020416275
800000000000000000
0000000000

32 bytes

13 Last 16-byte is
XORed with K2

= 0104782E21801D8030
42F54E5850204195E6
6EB928278083BFDC8
A5A7E0E0D25

As the padding is added the last
block is XORed with K2, if padding is
not added, then XORed with K1.

14 Encryption using K = 351DB989A47CCA648
4CCE346FD5AE767A
8DD63A3B89D54B37
CA802473FDA9175

Standard AES encryption with IV =
00s in CBC mode

15 Diversified key = A8DD63A3B89D54B3
7CA802473FDA9175

Last 16-byte block. (CMAC)

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

8 of 21

If the length of M is more than 15 bytes, standard CMAC algorithm can be used, without
taking care of padding, XOR-ing and encryption. The message for standard CMAC is
then the data of step 9.

2.3 AES-192 key
Input:
• 1 to 31 bytes of diversification input (let’s name it “M”).
• 24 bytes AES 192 bits master key (let's name it “K”).

Output:
• 24 bytes AES 192 bits diversified key.

Algorithm:
1. Calculate CMAC input D1 and D2:
2. D1 ← 0x11 || M || Padding
3. D2 ← 0x12 || M || Padding
4. Padding is chosen such that D1 and D2 always have a length of 32 bytes. Padding

bytes are according to the CMAC padding, i.e. 80h followed by 00h bytes. So the
length of Padding is 0 to 30 bytes.

5. Calculate the Boolean flag ‘Padded’, which is true if M is less than 31 bytes long,
false otherwise. The Boolean argument “Padded” is needed because it must be
known in AES192CMAC which K1 or K2 is to be used in the last computation round.

6. Calculate output:
7. DerivedKeyA ← AES192CMAC(K, D1, Padded)
8. DerivedKeyB ← AES192CMAC(K, D2, Padded)
9. DiversifiedKey ← first 8 bytes of DerivedKeyA || (next 8 bytes of DerivedKeyA XOR

first 8 bytes of DerivedKeyB) || next 8 bytes of DerivedKeyB

Processing load:

One AES 192 key load, 6 AES 192 computations

If the special CMAC keys K1 and/or K2 can be reused from one to the following
AES_CMAC operation, then we will need only 5 AES computations. But this depends on
the HW implementation of the CMAC operation.

Fig 3 shows the algorithm as a block diagram.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

9 of 21

AES DIV
Constant 2

Diversification input
(1 – 31 bytes)

AES 192 Key
(24 bytes)

DerivedKeyA
(16 bytes)

Padding
Padded

K

DerivedKeyA

AES DIV
Constant 3

Diversification input
(1 – 31 bytes)

DerivedKeyB
(16 bytes)

Padding

AES192CMAC(K,D2,Padded)

32 bytes
D2

Padded

K

DerivedKeyB

8 bytes 8 bytes 8 bytes 8 bytes

XOR

8 bytes 8 bytes 8 bytes

Diversified key AES 192
(24 bytes)

AES192CMAC(K,D1,Padded)

32 bytes
D1

Diversification input
(1 – 31 bytes)

M

Diversification input
(1 – 31 bytes)

M

AES DIV Constant 2 = 0x11
AES DIV Constant 3 = 0x12

Fig 3. Diversification of 192-bit AES key

2.3.1 AES-192 key diversification example
Master key (K) = 00112233445566778899AABBCCDDEEFF0102030405060708, which
will be diversified.

Table 3. Example – AES 192 key diversification
step Indication Data/ Message Comment
CMAC sub key generation
1 Master key (K) = 001122334455667788

99AABBCCDDEEFF01
02030405060708

The key, which is going to be
diversified

2 K0 = 52DB5AFE7B64EFFA
B1E92EEA983C5F73

CIPHK(0b), AES (K, 16-byte 0s).

3 K1 = A5B6B5FCF6C9DFF5 The first sub key, see in [CMAC].

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

10 of 21

step Indication Data/ Message Comment
63D25DD53078BEE6

4 K2 = 4B6D6BF9ED93BFEA
C7A4BBAA60F17D4B

The second sub key, see in [CMAC].

Diversified key generation

5 UID = 04782E21801D80 7-byte UID of PICC

6 Application ID = 3042F5 3- byte DESFire AID

7 System Identifier = 4E585020416275 ASCII of system identifier name

8 Diversification input
(M)

= 04782E21801D803042
F54E585020416275

Data from step 5 to step 7. It doesn’t
matter how you make your
diversification input, diversification
input must be unique for unique
PICC e.g. here the UID is unique
and the same diversification input
must be used in personalization and
validation of the PICC. Maximum
length of M is 31 bytes.

9 Add the Div
Constant 2 at the
beginning of M

= 1104782E21801D8030
42F54E585020416275

Div constant 2 is fixed, must be 0x11
for AES 192 keys.

10 Do I need Padding = Yes The algorithm always needs 32-byte
block for AES; so far we have 18
bytes.

11 Padding = 800000000000000000
0000000000

14-byte padding to make 32-byte
block.

12 CMAC input D1 = 104782E21801D80304
2F54E5850204162758
000000000000000000
000000000

32 bytes

13 Last 16-byte is
XORed with K2

= 1104782E21801D8030
42F54E585020412918
EBF9ED93BFEAC7A4
BBAA60F17D4B

As the padding is added the last
block is XORed with K2, if padding is
not added, then XORed with K1.

14 Encryption using K = C09ADDAE085769A6
E25DE29E51DA3669
CE39C8E1CD82D9A7
869FE6A2EF75725D

Standard AES encryption with IV =
00s in CBC mode

15 Diversified key A = CE39C8E1CD82D9A7
869FE6A2EF75725D

Last 16-byte block. (CMAC)

16 Add the Div
Constant 3 at the
beginning of M

= 1204782E21801D8030
42F54E585020416275

Div Constant 3 is fixed, must be
0x12 for AES 192 keys.

17 CMAC input D2 = 1204782E21801D8030
42F54E585020416275
800000000000000000
0000000000

Here the only difference is Div
Constant 3, which is ‘12’ fixed for
AES 192.

18 Last 16-byte is
XORed with K2

= 1204782E21801D8030
42F54E585020412918
EBF9ED93BFEAC7A4
BBAA60F17D4B

As the padding is added the last
block is XORed with K2, if padding is
not added, then XORed with K1.

19 Encryption using K = D052C22EA94BEFE1 Standard AES encryption with IV =

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

11 of 21

step Indication Data/ Message Comment
F748A9F5A675188A
38440F75A580E97E
176755EE7586E12C

00s in CBC mode

20 Derived key B = 38440F75A580E97E
176755EE7586E12C

Last 16-byte block. (CMAC)

21 First 8-byte of
derived key A

= CE39C8E1CD82D9A7

22 Last 8-byte of
derived key A

= 869FE6A2EF75725D

23 First 8-byte of
derived key B

= 38440F75A580E97E

24 Step 22 XOR step
23

= BEDBE9D74AF59B23

25 Last 8-byte of
derived key B

= 176755EE7586E12C

26 Diversified Key = CE39C8E1CD82D9A7
EDBE9D74AF59B2317
6755EE7586E12C

Step 21 + Step 24 + step 25

If the length of M is more than 15 bytes, standard CMAC algorithm can be used, without
taking care of padding, X-ORing and encryption. The message for standard CMAC is
then the data of step 9 and data of step 16.

2.4 2TDEA key
Input:
• 1 to 15 bytes of diversification input (let’s name it “M”)
• 16 bytes 2TDEA master key (let's name it “K”)

Output:
• 16 bytes 2TDEA diversified key.

Algorithm:
1. Calculate CMAC input D1 and D2:
2. D1 ← 0x21 || M || Padding
3. D2 ← 0x22 || M || Padding
4. Padding is chosen such that D1 and D2 always have a length of 16 bytes. Padding

bytes are according to the CMAC padding, i.e. 80h followed by 00h bytes. So the
length of Padding is 0 to 14 bytes.

5. Calculate the boolean flag ‘Padded’, which is true if M is less than 15 bytes long,
false otherwise. The Boolean argument “Padded” is needed because it must be
known in TDEACMAC which K1 or K2 is to be used in the last computation round.

6. Calculate output:
• DerivedKey1 = TDEACMAC(K, D1, Padded)
• DerivedKey2 = TDEACMAC(K, D2, Padded)
• 16-byte diversified key = DerivedKey1 || DerivedKey2.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

12 of 21

Processing load: one 2TDEA key load, 6 2TDEA computations

We can reduce the TDEA operations to 5 if the CMAC K1 and/or K2 can be reused.

The Boolean argument “Padded” is needed because it must be known in TDEACMAC
which K1 or K2 is to be used in the last computation round.

Remark: The master key can only be used about 1 million times if one wants to comply
with SP 800-38B. This means that the construction suggested here can be used for
500000 cards. If more than 500000 cards are needed, and if duplicate keys are not
acceptable for the application, a two level key diversification mechanism could be used.

Fig 4 shows the algorithm as a block diagram.

TDEA DIV
Constant 1

Diversification input
(1 – 15 bytes)

2TDEA key (K)
(16 bytes)

DerivedKey1
(8 bytes)

Padding

Padded

K

DerivedKey1

TDEA DIV
Constant 2

Diversification input
(1 – 15 bytes)

DerivedKey2
(8 bytes)

Padding

TDEACMAC(K,D2,Padded)

16 bytes
D2

Padded

K

DerivedKey2

TDEACMAC(K,D1,Padded)

16 bytes
D1

2TDEA Diversified Key
(16 bytes)

Diversification input
(1 – 15 bytes)

M

Diversification input
(1 – 15 bytes)

M

TDEA DIV constant 1 = 0x21
TDEA DIV constant 2 = 0x22

Fig 4. Diversification of 2TDEA key

MIFARE DESFire products store key version information in the lowest significant bits of
the first 8 bytes 2TDEA key. If this versioning information is to be preserved, it is to be
copied from the master key into the diversified key.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

13 of 21

2.4.1 2TDEA key diversification example
Master key (K) = 00112233445566778899AABBCCDDEEFF, which will be diversified.

Table 4. Example – 2TDEA key diversification
step Indication Data/ Message Comment
CMAC sub key generation
1 Master key (K) = 001122334455667788

99AABBCCDDEEFF
The key, which is going to be
diversified

2 K0 = FB09759972301AF4 CIPHK(0b), 2DEA (K, 8-byte 0s).

3 K1 = F612EB32E46035F3 The first sub key, see in [CMAC].

4 K2 = EC25D665C8C06BFD The second sub key, see in [CMAC].

Diversified key generation

5 UID = 04782E21801D80 7-byte UID of PICC

6 Application ID = 3042F5 3- byte DESFire AID

7 System Identifier = 4E58502041 ASCII of system identifier name

8 Diversification input
(M)

= 04782E21801D803042
F54E58502041

Data from step 5 to step 7. It doesn’t
matter how you specify your
diversification input, the main thing,
Diversification input must be unique
for unique PICC e.g. here the UID is
unique and the same diversification
input must be used in
personalization and validation of the
PICC. This has to be up to 16 bytes.

9 Add the TDEA Div
Constant 1 at the
beginning of M

= 2104782E21801D8030
42F54E58502041

It is fixed, must be ‘21’ for 2TDEA
keys.

10 Do I need Padding = No The algorithm always needs 16-byte
block for TDEA, Here message is 16
bytes.

11 CMAC input D1 = 2104782E21801D8030
42F54E58502041

16 bytes

12 Last 16-byte is
XORed with K1

= 2104782E21801D80C
6501E7CBC3015B2

As the padding is NOT added the
last block is XORed with K1, if
padding is added, then XOR with K2.

13 Encryption using K = 5B7B81DCDE98A6BE
16F8597C9E8910C8

Standard TDEA encryption with IV =
00s in CBC mode

14 Derived Key 1 = 16F8597C9E8910C8 CMAC

15 Add the TDEA Div
Constant 2 at the
beginning of M

= 2204782E21801D8030
42F54E58502041

16 Do I need Padding = No

17 CMAC input D1 = 2204782E21801D8030
42F54E58502041

16 bytes

18 Last 8-byte is
XORed with K1

= 2204782E21801D80C
6501E7CBC3015B2

As the padding is NOT added the
last block is XORed with K1, if
padding is added, then XOR with K2.

19 Encryption using K = D2292CCE0B8106CE
6B9648D006107DD7

Standard TDEA encryption with IV =
00s in CBC mode

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

14 of 21

step Indication Data/ Message Comment
20 Derived Key 2 = 6B9648D006107DD7 CMAC

21 2TDEA diversified
key (without
restoring the key
version)

= 16F8597C9E8910C86
B9648D006107DD7

Step 15 + step 20

The lowest significant bit of every key byte is not used in DES calculation. MIFARE DESFire and
SAMs use the lowest significant bit of first eight bytes key as the key version. In this example the
version of master key = 0x55 (01010101b). These version bits are required to insert in the
diversified key as well, to make the same key version for master key and diversified keys.

22 2TDEA diversified
key
(after inserting the
key version)

= 16F9587D9E8910C9
6B9648D006107DD7

If the length of M is more than 7 bytes, standard CMAC algorithm can be used, without
taking care of padding, XOR-ing and encryption. The message for standard CMAC is
then the data of step 9 and data of step 15.

2.5 3TDEA key

Input:
• 1 to 15 bytes of diversification input (let’s name it “M”)
• 24 bytes 3TDEA master key (let's name it “K”)

Output:
• 24 bytes 3TDEA diversified key.

Algorithm:
1. Calculate CMAC input D1, D2 and D3:
2. D1 ← 0x31 || M || Padding
3. D2 ← 0x32 || M || Padding
4. D3 ← 0x33 || M || Padding
5. Padding is chosen such that D1, D2 and D3 always have a length of 16 bytes.

Padding bytes are according to the CMAC padding, i.e. 80h followed by 00h bytes.
So the length of Padding is 0 to 14 bytes.

6. Calculate the Boolean flag ‘Padded’, which is true if M is less than 15 bytes long,
false otherwise. The Boolean argument “Padded” is needed because it must be
known in TDEACMAC which K1 or K2 is to be used in the last computation round.

7. Calculate output:
• DerivedKey1 = TDEACMAC(K, D1, Padded)
• DerivedKey2 = TDEACMAC(K, D2, Padded)
• DerivedKey3 = TDEACMAC(K, D3, Padded)
• 16-byte diversified key = DerivedKey1 || DerivedKey2 || DerivedKey3.

Processing load: one 3TDEA key load, 9 3TDEA computations

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

15 of 21

Remark: The master key can only be used about 1 million times if one wants to comply
to SP 800-38B. This means that the construction suggested here can be used for about
330000 cards. If more than 330000 cards are needed, and if duplicate keys are not
acceptable for the application, a two level key diversification mechanism is used.

The Boolean argument “Padded” is needed because it must be known in TDEACMAC
which K1 or K2 is to be used in the last computation round.

Fig 5 shows the algorithm as a block diagram.

TDEA DIV
Constant 3

Diversification input
(1 – 15 bytes)

3TDEA key (K)
(24 bytes)

DerivedKey1
(8 bytes)

Padding

Padded

K

DerivedKey1

TDEA DIV
Constant 4

Diversification input
(1– 15 bytes)

DerivedKey2
(8 bytes)

Padding

TDEACMAC(K, D2, Padded)

16 bytes
D2

Padded

K

DerivedKey2

TDEACMAC(K, D1,Padded)

16 bytes
D1

3TDEA Diversified Key
(24 bytes)

TDEA DIV
Constant 5

Diversification input
(1 – 15 bytes)

Padding

TDEACMAC(K, D3,Padded)

16 bytes
D3

Padded

K

DerivedKey3
(8 bytes)

DerivedKey3

Diversification input
(1– 15 bytes)

M

Diversification input
(1– 15 bytes)

M

Diversification input
(1– 15 bytes)

M

TDEA DIV Constant 3 = 0x31
TDEA DIV Constant 4 = 0x32
TDEA DIV Constant 5 = 0x33

Fig 5. Diversification of 3TDEA key

MIFARE DESFire products store key version information in the lowest significant bits of
the first 8 bytes 3TDEA key. If this versioning information is to be preserved, it is to be
copied from the master key into the diversified key.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

16 of 21

2.5.1 3TDEA key diversification example
Master key (K) = 00112233445566778899AABBCCDDEEFF0102030405060708, which
will be diversified.

Table 5. Example – 3TDEA key diversification
step Indication Data/ Message Comment
CMAC sub key generation
1 Master key = 001122334455667788

99AABBCCDDEEFF01
02030405060708

The key, which is going to be
diversified

2 K0 = 51F6AC7C734A0DE5 CIPHK(0b), 2DEA (K, 8-byte 0s).

3 K1 = A3ED58F8E6941BCA The first sub key, see in [CMAC].

4 K2 = 47DAB1F1CD28378F The second sub key, see in [CMAC].

Diversified key generation

5 UID = 04782E21801D80 7-byte UID of PICC

6 Application ID = 3042F5 3- byte DESFire AID

7 System Identifier = 4E5850 ASCII of system identifier name

8 Diversification input
(M)

= 04782E21801D803042
F54E5850

Data from step 5 to step 7. It doesn’t
matter how you specify your
diversification input, the main thing,
Diversification input must be unique
for unique PICC e.g. here the UID is
unique and the same diversification
input must be used in
personalization and validation of the
PICC. This has to be up to 16 bytes.

9 After inserting
TDEA Div constant
3

= 3104782E21801D8030
42F54E5850

It is fixed, must be ‘31’ for 3TDEA
keys.

10 Do I need Padding = Yes The algorithm always needs 16-byte
block for TDEA, here message is 14
bytes.

11 CMAC input D1 = 3104782E21801D8030
42F54E58508000

8000 padding added

12 Last 8-byte is
XORed with K2

= 3104782E21801D8077
9844BF9578B78F

As the padding is added the last
block is XORed with K2, if padding is
NOT added, then XOR with K1.

13 Encryption using K = 4C294A83A6829EC12
F0DD03675D3FB9A

Standard TDEA encryption with IV =
00s in CBC mode

14 Derived Key 1 = 2F0DD03675D3FB9A CMAC

15 After inserting
TDEA Div constant
4 in M

= 3204782E21801D8030
42F54E5850

It is fixed, must be ‘32’ for 3TDEA
keys.

16 Do I need Padding = Yes The algorithm always needs 16-byte
block for TDEA, here message is 14
bytes.

17 CMAC input D2 = 3204782E21801D8030
42F54E58508000

8000 padding added

18 Last 8-byte is = 3204782E21801D8077 Diversification constant and

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

17 of 21

step Indication Data/ Message Comment
XORed with K2 9844BF9578B78F diversification input. Here the

constant must be ‘32’

19 Encryption using K = 41A9459AB5B209905
705AB0BDA91CA0B

Standard TDEA encryption with IV =
00s in CBC mode

20 Derived Key 2 = 5705AB0BDA91CA0B CMAC

21 After inserting
TDEA Div constant
5 in M

= 3304782E21801D8030
42F54E5850

It is fixed, must be ‘33’ for 3TDEA
keys.

22 Do I need Padding = Yes The algorithm always needs 16-byte
block for TDEA, here message is 14
bytes

23 CMAC input D3 = 3304782E21801D8030
42F54E58508000

8000 padding added

24 Last 8-byte is
XORed with K2

= 3304782E21801D8077
9844BF9578B78F

Diversification constant and
diversification input. Here the
constant must be ‘33’

25 Encryption using K = 7FABF1B71419AF155
5B8E07FCDBF10EC

Standard TDEA encryption with IV =
00s in CBC mode

26 Derived Key 3 = 55B8E07FCDBF10EC CMAC

27 Diversified 3TDEA
key (without
restoring the key
version)

= 2F0DD03675D3FB9A5
705AB0BDA91CA0B5
5B8E07FCDBF10EC

24-byte 3TDEA key. (Step 14 + step
20 + step 26).

The lowest significant bit of every key byte is not used in DES calculation. MIFARE DESFire and
SAMs use the lowest significant bit of first eight bytes key as the key version. In this example the
version of master key = 0x55 (01010101b). These version bits are required to insert in the
diversified key as well, to make the same key version for master key and diversified keys.

28 Diversified 3TDEA
key
(after restoring the
key version)

= 2E0DD03774D3FA9B5
705AB0BDA91CA0B5
5B8E07FCDBF10EC

If the length of M is more than 7 bytes, standard CMAC algorithm can be used, without
taking care of padding, XOR-ing and encryption. The message for standard CMAC is
then the data of step 9, step 15 and step 21.

3. Conclusion
The master keys must be stored securely if the algorithms are implemented in software.
MIFARE SAM AV2 offers secure storage of the master keys and dynamic
diversifications. For the optimum security, using MIFARE SAM AV2 can be the best
solution. The user shall take care for defining his master keys, shall avoid the weak keys
whenever necessary. Neither the SAM nor the algorithms analyze the keys. NXP
recommends using AES instead of TDEA.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

18 of 21

4. Legal information

4.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

4.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

4.3 Licenses
ICs with DPA Countermeasures functionality

NXP ICs containing functionality implementing

countermeasures to Differential Power

Analysis and Simple Power Analysis are

produced and sold under applicable license

from Cryptography Research, Inc.

4.4 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

MIFARE Plus — is a trademark of NXP B.V.

MIFARE DESFire — is a trademark of NXP B.V.

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

19 of 21

5. List of figures

Fig 1. CMAC construction (2 cases: left without
padding, right with padding) 5

Fig 2. Diversification of 128-bit AES key 6
Fig 3. Diversification of 192-bit AES key 9
Fig 4. Diversification of 2TDEA key 12
Fig 5. Diversification of 3TDEA key 15

NXP Semiconductors AN10922
 Symmetric key diversifications

AN10922 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 2.0 — 8 February 2017
165320

20 of 21

6. List of tables

Table 1. Abbreviations .. 3
Table 2. Example – AES 128 key diversification 7
Table 3. Example – AES 192 key diversification 9
Table 4. Example – 2TDEA key diversification 13
Table 5. Example – 3TDEA key diversification 16

NXP Semiconductors AN10922
 Symmetric key diversifications

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2017. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 8 February 2017 165320
Document identifier: AN10922

7. Contents

1. Introduction ... 3
1.1 Abbreviations ... 3
1.2 Examples presented in this document 4
2. Key Diversification .. 5
2.1 Construction ... 5
2.2 AES-128 key .. 6
2.2.1 AES-128 key diversification example 7
2.3 AES-192 key .. 8
2.3.1 AES-192 key diversification example 9
2.4 2TDEA key ... 11
2.4.1 2TDEA key diversification example 13
2.5 3TDEA key ... 14
2.5.1 3TDEA key diversification example 16
3. Conclusion ... 17
4. Legal information .. 18
4.1 Definitions .. 18
4.2 Disclaimers... 18
4.3 Licenses ... 18
4.4 Trademarks .. 18
5. List of figures ... 19
6. List of tables .. 20
7. Contents ... 21

	1. Introduction
	1.1 Abbreviations
	1.2 Examples presented in this document

	2. Key Diversification
	2.1 Construction
	2.2 AES-128 key
	Input:
	Output:
	Algorithm:
	Processing load:
	2.2.1 AES-128 key diversification example

	2.3 AES-192 key
	Input:
	Output:
	Algorithm:
	Processing load:
	2.3.1 AES-192 key diversification example

	2.4 2TDEA key
	Input:
	Output:
	Algorithm:
	2.4.1 2TDEA key diversification example

	2.5 3TDEA key
	Input:
	Output:
	Algorithm:
	2.5.1 3TDEA key diversification example

	3. Conclusion
	4. Legal information
	4.1 Definitions
	4.2 Disclaimers
	4.3 Licenses
	4.4 Trademarks

	5. List of figures
	6. List of tables
	7. Contents

